

Absyntax Framework

User Guide
December 2013

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 2 of 145

Table of Contents
Introduction ...4
Fundamentals ...6

Projects ...7
Feature Groups ..8
Features ..9
Connectors ..10
Signals and Data ..11
Connections ..12
Data Types ...13

Definition ...14
Data Conversion ...16

Synchronisation ..17
Threads ...18
Re-entrant Paths ..21
Parallel Computing ...22

System Requirements ..23
Installation and Licence Activation ...24
Editor ...25

Standard toolbar ...29
Select Project Type ..32
Saved project file extensions ...33

Tools toolbar ...34
Edit toolbar ...36
Runtime toolbar ..38
Filter toolbar ..39

Test Filter ..41
Lookup Table toolbar ..42
Node Hierarchy toolbar ..43
Feature Tray ...44
Explorer ...46

Explorer node context menu ..48
Feature Group Views ...49
Filter Builder ...51

Creating a new filter ...52
Anatomy of a composite filter ..53

Filter Tray ..55
Composite Filter Cache ..56
Lookup Table Editor ...57

Anatomy of a lookup table ...58
Input parameters ..59
Output parameters ..61
Testing ...63
Lookup entries ..65

Editing a lookup entry ..68
Refined example ...70

Properties ..71

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 3 of 145

Project Parameters ...73
Project Parameters toolbar ...75

Connection Manager ..77
Connection Manager toolbar ..79

Output ...81
Breakpoints ...82

Breakpoints toolbar ...84
Breakpoint Editor ..87
Runtime Data ..89
Log File Listing ...91
Find ...92

Find Results ..93
Find Results toolbar ...94

Re-entrant Path Summary ..96
Re-entrant Path Summary toolbar ...98
Re-entrant path detail ...99

Configuration Manager ...100
Configure ..101

Connector Tray ...102
Type Browser ..105

Known type lists ...107
Type builder panel ..109

Options ..111
Options - General ...112
Options - View ..114
Options - Grid ...116

Project Settings ..118
Calculation Builder ..120

Calculation Builder toolbar ...123
Anatomy of a mathematical expression ...125

Batch Client ..127
Running the program ...128

Command line data ..130
Executing projects ..132

Executing signal-input projects ...133
Executing data-input projects ...134

Runtime Server ...135
Licensing Manager ...136
FAQs ...138

General ...139
What is a string? ..140
What is a Boolean expression? ...141

Absyntax Editor ..142
How do I secure a project? ..143
Can I load a previously saved project into the current project?144
Can I save an embedded project? ...145

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 4 of 145

Introduction

What Absyntax Is

Absyntax is a desktop framework application whose purpose is to bridge the gulf between people
who need bespoke software and people who can deliver such software. You may think of it as
a tool for creating software without the need to understand programming languages and jargon
usually associated with the discipline of software engineering.

Absyntax is suited to creating both standalone software (i.e. software that is designed to run
on its own) and partial software (i.e. software that is designed to be invoked by other computer
applications).

What Absyntax Is Not

Absyntax is not a code-generating application. Neither is it a workflow application.

Why Might You Want It?

Absyntax enables a wide range of people – not just expensive specialists – to effect software
change. This means that the dependency of an individual or an organisation on traditional
software engineering skills is reduced. In turn, this allows the creation and modification of software
to be realised more quickly and more cheaply.

Absyntax can be integrated with third-party applications, enabling these applications to invoke
Absyntax projects programmatically. This is of particular benefit to packaged solutions that cannot
fully meet all of their various clients' needs. By working in tandem with Absyntax, such solutions
can support client-specific functionality while avoiding the need for multiple product versions. Even
modular solutions with parameter-driven operations are, ultimately, limited. With Absyntax, though,
such limitations can be bypassed, providing clients with the capabilities they would expect from
bespoke solutions.

Third-party applications require periodic modification, and not only to introduce enhancements or
fix bugs. Changing business requirements, legislative impacts and improved analytical methods
are just a few of the reasons why further software development might be needed. Some software-
driven operations are simply more volatile than others: Absyntax can be used to handle such
operations, affording business analysts and other industry specialists the opportunity to effect
changes. This softens the impact of such changes on your organisation and offers a more
responsive, cost-effective service to your clients.

Many software solutions support an application programming interface (API) allowing software
developers to tap into the capabilities of these solutions using programmatic means. But why
should such capabilities be accessible only to those with software engineering skills? Absyntax
makes it possible to expose APIs to a much wider audience.

Absyntax allows software to be visualised. Discrete, low-level operations can be aggregated for
presentational purposes, so you don't need to produce diagrams separately using some other tool.

Absyntax is extensible. This means that software developers can author their own features,
which is of particular benefit when needing to provide higher-level reusable operations to a
specific industry. Such custom features typically obviate the need for clients to create equivalent

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 5 of 145

functionality using perhaps dozens of out-of-the-box Absyntax features. Also, developers can
integrate existing software components with Absyntax using very little code. This means that
Absyntax can harness the power of your existing code libraries without the need for major
redevelopment.

Every Absyntax project has a signature. A signature is a function of both a project's state and the
underlying codebase. Thus project signatures may be used in support of corporate governance
in situations where business-critical operations rely on the execution of Absyntax projects. If a
project is changed in some material way or if the underlying framework software changes, the
project's signature will change. So if behavioural assurance is important to you then implement
your critical operations using Absyntax.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 6 of 145

Fundamentals

This section introduces the core aspects of the Absyntax framework. If you are new to Absyntax
then this is the place to start.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 7 of 145

Projects

An Absyntax project is equivalent to a program: it represents Absyntax's "unit of execution". When
you want to create software with Absyntax, you start with an empty project.

Every project supports:

• an entry point that is signalled when project execution begins;
• an exit point that the project signals in order to end.

A project is also a feature group, meaning that it contains features. It is these contained features
– and their interconnections – that define the behaviour of a project and thus the behaviour of your
software. They may be connected to a project's internal entry- and exit-point proxies, allowing
them both to respond when the project receives inputs from the outside world and to signal to the
outside world that an operation has concluded.

Projects may be saved as files.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 8 of 145

Feature Groups

Perhaps unsurprisingly, a feature group is a group of (or container for) other features. Importantly,
a feature group is itself a feature. This means that a feature group has all the attributes of a
feature: for example it can be named, and it supports connectors.

Feature groups are very useful for things such as:

• creating custom features through feature aggregation;
• performing well-defined operations whose behaviour is determined by the contained features;
• creating hierarchical projects that compartmentalise discrete operations, foster ease of

maintenance and promote understanding.

They are essential for enabling concurrent processing on multiple computers.

In Absyntax the common implementation of the feature group is known as the "configurable feature
group". A configurable feature group is a feature group whose inputs and outputs are user-
definable (which contrasts with the majority of features, whose connector profiles are fixed). Not
all groups are configurable, though.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 9 of 145

Features

Features are discrete units of functionality. In other words, features do things. They are the cogs
in the machine. They also communicate with one another via inputs and outputs.

Features are the proverbial "black boxes": how they do what they do is unimportant (although
the ways in which they respond to inputs and trigger outputs are important because such details
will have a bearing on how you connect your features). As is the case for integrated circuits in
the electronics industry, a feature's designer doesn't care about the context in which the feature
is used: the designer merely states the feature's behaviour and it is up to the user to determine
whether and how to use the feature.

All features have names, which you may change. Within a group, all feature names must be
unique.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 10 of 145

Connectors

A given feature typically has one or more inputs and outputs (which are also referred to as plugs
and sockets respectively, and collectively known as connectors). In general, inputs are used to set
a feature's state or initiate a feature's behaviour; outputs are used by a feature to emit signals and
data (often in response to the receipt of input signals and data). Connections are created between
pairs of connectors in order to pass signals or data from one feature to others.

Each and every input and output can transmit either signals or data. Precisely what is transmitted
is determined by the feature's designer and is immutable (i.e. a signal output will always transmit
signals; a data input will only ever accept data of a certain type). An input may be connected to
multiple outputs. Likewise, an output may be connected to multiple inputs. Inputs and outputs
may be left unconnected. Inputs and outputs belonging to the same feature may be connected
to one another. However, there are overarching rules that determine whether an input and output
may be connected.

All connectors have names, which you may change. Within a feature, all such names must be
unique.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 11 of 145

Signals and Data

Signals are like empty envelopes. They can be sent and received but carry no information. A
signal merely informs its recipient that something has happened. For example, consider the
Collection feature, which allows you to examine each item in a collection sequentially. When the
end of the collection is reached, the feature emits a signal via its EndOfSet output. If you have
a feature that should be activated in some way when this happens, you would connect it to the
Collection's EndOfSet output.

Data, on the other hand, can be thought of as signals with payloads. Or like envelopes that
contain letters. Each letter is an item of information. Take the ItemList feature: if you want to add
an item to the list, you would connect its Add input to an output that emits data of a compatible
type.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 12 of 145

Connections

It is unlikely that your project requirements will be met by just one feature. Normally you will
need to combine the behaviours of several features in order to realise the functionality you need,
something that is achieved by connecting inputs and outputs together. The rules for connecting
inputs and outputs are as follows:

• signal outputs may be connected to signal inputs;
• signal outputs may not be connected to data inputs;
• data outputs may be connected to signal inputs;
• data outputs may be connected to data inputs as long as the data types are compatible.

"Compatible", here, means that the type of the output data is either the same as the type of the
input data or is convertible to the type of the input data. See the section on data conversion for
more information.

When a feature emits a signal or data through an output, each of the connected inputs must
be informed. Depending on how the output has been configured, the connected inputs are
informed either in sequence (i.e. synchronously) or at the same time (i.e. asynchronously).
 If they are informed in sequence, the order is determined by a unique number assigned to
each of the output's connections. You can change these numbers to control the order in which
connections are fired. If the inputs are informed at the same time then no guarantee can be made
as to which inputs will be informed first. You must decide on the appropriate behaviour and add
synchronisation mechanisms to your projects where necessary.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 13 of 145

Data Types

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 14 of 145

Definition

Data: that's another word for information. But what is a data type? And why should you care?

Objects and Types

For several decades, programmers have been developing software based on the concept of
objects. Put simply, an object is something that has characteristics and can do things. For
example, a car is a kind of object: a typical car has an engine capacity and a colour. It also starts
when the ignition is turned on. In reality, cars – indeed, any types of object – have all sorts of
characteristics and behaviours but we will usually only be interested in a few of them. In the world
of Absyntax, an object is an item of data.

Programmers define types. A type is like a template: it's a complete definition of the
characteristics and behaviours that all of its objects are to support. Thus when we have an object
of type "Car", we know that we will be able to find out its engine capacity and its colour, and we
also know that we can make it "start" (whatever that might mean). Absyntax features define their
data inputs and data outputs in terms of the types of data they support. Thus if a particular input
has a data type of “Car" then it will only accept items of data that are cars.

Object Composition

Let's take this a step further. Engine capacity is probably most usefully expressed as a whole
number of cubic centimetres. But in the world of software, a whole number is also a type of object.
 And what about colour? Perhaps text could be used to describe a car's colour, but one man's
"purple" might be another man's "indigo". So perhaps colour would be best defined in terms of
its RGB content. In other words, we could define a type called "Colour" with the characteristics
"R(ed)", "G(reen)" and "B(lue)", each of which could be a whole number in the range 0 to 255.
 In which case "indigo" could be represented using values for R, G and B of 75, 0 and 130
respectively.

What has just been described is object composition. It means that objects can be expressed
in terms of other objects. A car, for example, can be expressed in terms of a number (engine
capacity) and a colour. In turn, colours can be expressed in terms of three numbers. This is useful
to know because it will help you to:

• select suitable data types when necessary;
• understand how information in Absyntax is managed and presented;
• connect inputs and outputs correctly;
• decompose objects into the information you need;
• analyse how your projects are working.

It is also useful to understand inheritance because this will help you to understand type
conversion. Consider that the "Car" type might have characteristics in common with other types.
 Hair dryers, for example, also have colour and can be "started". That said, they don't normally
have engine capacities. Programmers often recognise such scenarios as this and define their
templates accordingly. Both the "Car" type and the "HairDryer" type share some details, and so
a programmer might define a type named "PoweredItem", which supports a colour and can be
started. So, if the "Car" type is defined as being a type of "PoweredItem" then it needs only to
define engine capacity as an additional characteristic because it inherits the characteristics of its

http://www.colorschemer.com/online.html

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 15 of 145

parent type. This means that, say, a data input supporting "PoweredItem" types will accept both
items of type "Car" and items of type "HairDryer".

Namespaces

Commonly, the name assigned to a type is qualified by a namespace. An example is
"MI2.Units.Lengths.Metre", which includes the namespace ("MI2.Units.Lengths") and the type
name ("Metre"). A namespace is a naming convenience used by type designers for the purpose
of organising types within a software library or application. The Absyntax Editor displays
namespace-qualified type names in several places but is generally of academic interest to
Absyntax users and mentioned here for information only.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 16 of 145

Data Conversion

In order to transfer data from a feature output to a feature input, a connection must first be
established. For a connection to a data input, the reciprocal output data type must be compatible.

Absyntax supports several ways of converting data from one type into another and it will hide
any inherent complexity from you. In general, though, the chance of any given data type being
convertible to any other type are low. This is because there is a potentially unlimited number
of data types that we might define. What do a tree and a tennis ball have in common, and how
might we convert from one to another? This depends on how these types have been defined and
what, if any, conversion methods have been made available to Absyntax behind the scenes. The
good news is that you do not need to know these details. Absyntax will only allow you to create
connections that make sense.

Revisiting the previous example concerning cars and hair dryers, we established that both are
types of powered item. So whenever we have a car we also (implicitly) have a powered item. This
means that a "Car" output could be connected to a "PoweredItem" input. But when we consider
this in reverse, it is not possible to say that if we have a powered item it must be a car: it could
be a hair dryer. This means that a "PoweredItem" output could not, in general, be connected to a
"Car" input.

There is a middle ground. By way of example, consider "46". You have probably assumed that
this is a number. But in the context of this document, "46" is no different to any of the other text
you are reading. Importantly, your computer does not store it as a number and so cannot do
number-related things with it (like add it to another number).

It is sometimes the case that data of one type can be converted to data of another type as long as
it is in the right format. In the case of text data, "46" can be converted to the number 46 whereas
"46a" cannot. Absyntax cannot know in advance whether an item of text will be in a format that is
suitable for conversion to a number, but it can optionally allow you to create connections requiring
these kinds of conversion. It does so on the understanding that you know what you're doing and
accept that the transmission of data from output to input is not guaranteed because the conversion
may fail.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 17 of 145

Synchronisation

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 18 of 145

Threads

Threading is prevalent in computing although, as a user of computer applications, you have no
need to be aware of what threads are and what they can do for you. However, Absyntax cannot
mask the concept of threading. This is because the way your project manages and handles
threads will have a fundamental bearing on its behaviour.

Think of a thread as a worm of activity: its tail is fixed at its point of origin and it extends itself
along connections and through features. When your project starts running, a thread enters
through the project's Entry input. Then, depending on how you have configured your entry
point, the thread will either be routed along each connection in turn or it will spawn a new thread
for each connection. Thereafter, the same rule applies: whenever a thread emerges from a
feature it will either be routed along each connection in turn or it will spawn a new thread for each
connection, depending on how the output has been configured. Finally, when a thread has no
more connections to serve, it disappears.

If the same thread is required to serve two connections in turn (i.e. synchronously), it will only
serve the second connection once it has finished with the first. To understand what this means in
practice, consider the following diagram. This illustrates seven features, labelled A through G, and
the connections between them. The connection numbers indicate the order in which they are to be
served by a single thread. Suppose that all outputs are configured to operate synchronously.

A thread passing out of feature A is required to serve connections to features B and G. Firstly it
visits B, which does some work with it before dispatching it to C. Feature C does not trigger any
outputs and so, once it has finished with the thread, the thread is free to serve the next connection
of B's output.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 19 of 145

Next, the thread visits feature D which does some work with it before dispatching it to E.

Feature E does not trigger any outputs and so, once it has finished with the thread, the thread is
free to serve the next connection of D's output, which takes the thread on to feature F.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 20 of 145

Feature F does not trigger any outputs, so finally the thread winds its way back to the next
connection of A's output, which takes it on to feature G. You will need to rely on the descriptions
and documentation for a feature and its inputs in order to determine the circumstances in which a
particular output is triggered.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 21 of 145

Re-entrant Paths

As a single thread extends itself by passing from feature to feature, your computer will set aside
more and more memory. If a thread is allowed to continue unchecked, there will come a time
when your computer runs out of resources and abruptly terminates your project. The point
at which this happens depends largely on the amount of memory your computer has, but it is
generally not a concern unless your project has synchronous connection paths that loop back on
themselves. Such paths are referred to as re-entrant paths.

The good news is that this lurking threat can always be mitigated through the judicious use of
feature outputs configured for asynchronous operation. The Absyntax Editor will warn you when
it detects re-entrant paths. Note that Absyntax cannot know whether an input to any given feature
will trigger an output. Furthermore, if a re-entrant path is only executed a few times then it is
unlikely to cause problems. Thus the existence of a re-entrant path is not necessarily cause for
concern. Nonetheless it is considered good practice to eliminate these paths from your projects
where practicable.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 22 of 145

Parallel Computing

As well as facilitating asynchronous communication between features, Absyntax makes it easy to
perform truly parallel activities. It achieves this through use of a feature dedicated to the task of
managing a group of other features operating in another process, typically on another computer.
 This feature, RemoteFeatureGroup, works in conjunction with the Runtime Server, which is
Absyntax's runtime hosting application.

There is no limit to the number of RemoteFeatureGroups you can include in a project.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 23 of 145

System Requirements

Absyntax is a suite of Microsoft .NET Framework-based libraries and applications.

Operating Systems

• Windows XP (SP3) (x86)
• Windows Vista (SP2) (x86 and x64) (recommended)
• Windows 7 (SP1) (x86 and x64) (recommended)
• Windows 8 (x86 and x64) (recommended)

Software Requirements

Microsoft .NET 4.0 (installed automatically with the product if necessary, subject to your
agreement).

Hardware Requirements (guideline only)

• 2GHz processor
• 512MB RAM
• 1GB (32-bit) or 2GB (64-bit) available hard disk space for Microsoft .NET 4.0
• 10MB available hard disk space for the Absyntax Framework

Windows is a registered trademark of Microsoft Corporation in the United States and other
countries.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 24 of 145

Installation and Licence Activation

1. Download the zip file containing the latest product version from the Absyntax website.
2. Unzip the contained files: setup.exe and AbsyntaxSetup.msi.
3. Double-click setup.exe to begin the installation.
4. Follow the step-by-step guide. If prompted by a User Account Control dialogue, answer Yes.
5. Once Absyntax has been installed you will firstly need to activate a licence, so start

the Absyntax Licence Manager. A desktop shortcut should have been created for
this. Alternatively, from the Start menu select All Programs → MII Ltd → Absyntax
Licence Manager or open the Absyntax framework's installation directory and run
AbsyntaxLicenceManager.exe. Note: you must be connected to the internet in order to
activate licences.

6. If you have purchased a licence then enter the purchased licence key and the name of the
licensee you specified during the purchase process; then click Add.

7. Activate your purchased licence or, if you do not have one, activate the trial licence that was
included with the installation.

See the Licensing Manager section for more details on licence key registration and activation.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 25 of 145

Editor

The Absyntax Editor is the framework's primary application for creating, debugging and
maintaining Absyntax projects. The main window, shown above, is a container for panels and
tabbed documents which may be docked or floated to suit your particular workflow and screen
configuration.

Standard toolbar

The Standard toolbar provides convenient access to the most common operations and
actions.

Tools toolbar

The Tools toolbar is used to determine the currently selected design surface tool.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 26 of 145

Edit toolbar

The Edit toolbar provides convenient access to common design surface operations and
actions.

Runtime toolbar

The Runtime toolbar is used to execute and debug the current project interactively.

Filter toolbar

The Filter toolbar is used to manage Filter Builder operations, typically on behalf of
features and other components that make use of Boolean expressions.

Lookup Table toolbar

The Lookup Table toolbar provides convenient access to common Lookup Table Editor
operations and actions, typically on behalf of features that consume lookup tables.

Node Hierarchy toolbar

The Node Hierarchy toolbar facilitates the positioning of hierarchical components in
contexts that support such operations.

Feature Tray

The Feature Tray contains the templates from which all of a project's features are created.

Explorer

The Explorer summarises the contents of your project and offers a means of navigating it.

Properties

The Properties panel displays the state of the selected object or objects.

Design surface

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 27 of 145

The design surface of a view is where you add, configure and connect your project's
features. Most of your project development work will utilise such views.

Connector Tray

The Connector Tray contains templates of connectors that you use to define the inputs
and outputs of configurable feature groups.

Bird's Eye View

The Bird's Eye View displays the entire content of the currently active view. Positioned on
top is a semi-opaque thumbnail representing the extent of the current viewport. Drag the
thumbnail around to change the position of the viewport relative to the entire content.

This panel is useful if your view contains a lot of features and you are zoomed into a
relatively small area of the view. To show it, select View → Bird's Eye View from the
menu bar.

Status bar

Warns of issues that you should be aware of that may prevent your project from operating
correctly.

Output

The Output panel displays textual information during project execution.

Breakpoints

The Breakpoints panel allows you to manage the way in which threads are interrupted
during project execution.

Runtime Data

The Runtime Data panel allows you to explore your project's data during execution.

Connection Manager

The Connection Manager allows you to visualise and maintain connections between
features' inputs and outputs.

Log File Listing

The Log File Listing provides easy access to Absyntax's runtime log files.

Find Results

The Find Results panel is shown automatically every time you perform a find operation.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 28 of 145

Re-entrant Path Summary

The Re-entrant Path Summary highlights feature interconnections that may cause your
project to fail.

Configuration Manager

The Configuration Manager highlights services that your projects requires that require
additional information in order to operate correctly.

Filter Tray

The Filter Tray contains templates for filter elements and groups, which may combined in
the Filter Builder to create composite filters.

Composite Filter Cache

The Composite Filter Cache contains your saved composite filters.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 29 of 145

Standard toolbar

You can show or hide this toolbar by selecting View → Toolbars → Standard from the menu bar.

New Project

Discards the current project and displays the Select Project Type dialogue in
readiness for creating a new project. If the existing project has not been saved, you will
be prompted to do so before continuing.

Open Project

Discards the current project and displays the Open dialogue, allowing you to load a
previously saved project from file. If the existing project has not been saved, you will be
prompted to do so before continuing.

Save

Saves the current project to file. If the project is a new project that has not previously
been saved then you will be prompted to specify a file name, which defaults to the project
name.

If the active document is a lookup table, this will be saved to file instead. If the lookup
table is a new lookup table that has not previously been saved then you will be prompted
to specify a file name, which defaults to the lookup table's name.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 30 of 145

Print

Prints the contents of the active document.

Cut

Cuts the currently selected item to the clipboard.

Copy

Copies the currently selected item to the clipboard.

Paste

Pastes the content of the clipboard.

Undo/Undo History

Undoes the most recent action. Click the drop-down arrow to reveal a list of all
undoable actions and select those that are to be undone.

Redo/Redo History

Redoes the most recently undone action. Click the drop-down arrow to reveal a list
of all redoable actions and select those that are to be redone.

Explorer

Shows the Explorer panel.

Properties

Shows the Properties panel.

Project Parameters

Shows the Project Parameters panel.

Connection Manager

Shows the Connection Manager panel.

Output

Shows the Output panel.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 31 of 145

Breakpoints

Shows the Breakpoints panel.

Runtime Data

Shows the Runtime Data panel.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 32 of 145

Select Project Type

This dialogue is opened whenever you indicate that either:

• a new project is to be created, or
• the type of the current project is to be changed.

Select a project template from the list of known templates and press OK to confirm the selection.
If you select a template for a project that either receives or emits data of a type or types that have
not been predetermined by the template, the Type Browser will be shown to allow you to specify
one or both data types. If you are unsure which template to use, select Project (as shown above).
You can always change the project type later by selecting Project → Change Project Type... from
the menu bar.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 33 of 145

Saved project file extensions

The Editor saves and loads project files with .apj extensions. Such files contain proprietary binary
representations of the operational aspects of Absyntax projects. These files are also used by the
Batch Client.

When the Editor saves a project, it also saves the project workspace in a separate file with a .apw
extension. A project workspace contains details such as project settings, the location of features
on the design surface and the shape points of connections between connectors. Workspace files
are only relevant to the Editor.

The Editor can load a .apj file without an accompanying .apw file but the project's content will not
be presented as its creator intended. If you come across this situation, use the Auto Layout facility.

In general, though, if you are sharing projects then it is good practice to keep .apj and .apw file-
pairs together.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 34 of 145

Tools toolbar

You can show or hide this toolbar by selecting View → Toolbars → Tools from the menu bar.

Pointer Tool

Use this tool to perform a variety of miscellaneous design surface tasks, including
selection and repositioning. Use the mouse wheel to scroll up and down.

The following keyboard modifiers apply to the Pointer Tool:

Shift The mouse wheel will scroll left and right
Ctrl The Pointer Tool becomes the Zoom-in Tool
Space Bar The Pointer Tool becomes the Pan Tool
Alt The Pointer Tool becomes the Connection Tool

Zoom Tool

Use this tool to zoom in to and out of the design surface. Click to zoom in by preset
increments. Click and drag to create a zoom rectangle defining the extent of a zoom-in
operation. Use the mouse wheel for continuous zoom-in/out.

The following keyboard modifiers apply to the Zoom Tool:

Alt All click/drag operations become zoom-out operations
Space Bar The Zoom Tool becomes the Pan Tool

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 35 of 145

Pan Tool

Use this tool to drag the design surface around within the viewport. The Pan Tool is
only of use when the design surface extends beyond the bounds of the viewport.

The following keyboard modifiers apply to the Pan Tool:

Shift The mouse wheel will scroll left and right

Feature Tray Tool

Use this tool to add new features to the design surface.

The following keyboard modifiers apply to the Feature Tray Tool:

Ctrl The Feature Tray Tool becomes the Pointer Tool

Connection Tool

Use this tool to create connections between pairs of connectors. The rules for
creating connections are covered here. Click down on any connector and drag the
connection outline to another connector. While hovering over another connector, you will
see one of four cursors.

You are trying to connect an input to an input or an output to an output, which is not
possible.
The attempted connection would contravene the connection rules.

The connection is allowed but there may be data conversion problems at runtime.

The connection is allowed and there will be no data conversion problems.

The following keyboard modifiers apply to the Connection Tool:

Shift The mouse wheel will scroll left and right
Ctrl The Connection Tool becomes the Zoom-in Tool
Space Bar The Connection Tool becomes the Pan Tool
Alt The Connection Tool becomes the Pointer Tool

The Connections Manager offers an alternative means of creating connections.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 36 of 145

Edit toolbar

You can show or hide this toolbar by selecting View → Toolbars → Edit from the menu bar.

Fit On Screen

Fits the contents of the active document into the viewport.

Auto Layout

Automatically positions all features in the active document.

Group

Groups the selected features using a standard, connector-configurable Group
feature.

Ungroup

Ungroups the features of any groups in the current selection.

Trim

Removes any redundant connectors from the selected, connector-configurable
groups.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 37 of 145

Refresh

Refreshes the currently loaded project by identifying and refreshing all refreshable
features therein. Note that this action is not undoable.

Bring To Front

Brings the selected items to the top of the z-order. Note that features and
connections are rendered in different layers and it is possible to position either of these
layers uppermost by setting the rendering intent accordingly.

Bring Forward

Brings the selected items forward in the z-order. Note that features and connections
are rendered in different layers and it is possible to position either of these layers
uppermost by setting the rendering intent accordingly.

Send Backward

Sends the selected items backward in the z-order. Note that features and
connections are rendered in different layers and it is possible to position either of these
layers uppermost by setting the rendering intent accordingly.

Send To Back

Sends the selected items to the bottom of the z-order. Note that features and
connections are rendered in different layers and it is possible to position either of these
layers uppermost by setting the rendering intent accordingly.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 38 of 145

Runtime toolbar

You can show or hide this toolbar by selecting View → Toolbars → Runtime from the menu bar.

Run/ Resume

Starts executing the current project or resumes all of a project's paused threads.

Pause

Pauses all threads in the currently executing project.

Step All Threads

Steps all paused threads in the currently executing project.

Stop

Aborts the currently executing project.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 39 of 145

Filter toolbar

The Filter toolbar works in conjunction with the Filter Builder and with components that make use
of Boolean expressions. You can show or hide this toolbar by selecting View → Toolbars → Filter
from the menu bar.

Clear Filter Builder

Clears the Filter Builder of its current composite filter.

Add Filter

Adds a filter to the selected component by firstly clearing and opening the Filter
Builder. The Filter Builder then considers the component to be its "client" (see below).
The composite filter that you create is only added to the client when you choose Update
Client.

Edit Filter

Edits the selected component's existing filter by firstly opening the Filter Builder and
setting its composite filter. The Filter Builder then considers the component to be its
"client" (see below). Any changes you make to the composite filter are only passed on to
the client when you choose Update Client.

Remove Filter

Removes the existing filter from the selected component.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 40 of 145

Test Node Filter

Opens the Test Filter dialogue in respect of the currently selected Filter Builder node.

Find Client

Opens the view containing the Filter Builder's current client component and highlights
said component.

Update Client

Sets the filter of the Filter Builder's current client component to be a copy of the Filter
Builder's current composite filter.

Add To Cache

Adds a copy of the Filter Builder's selected composite filter sub-node (and all its
children) to the Composite Filter Cache.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 41 of 145

Test Filter

Filter description

A description of the filter element or group being tested.

Test data

Enter the data to be tested here.

Test button

Click this button to perform the test. The visual test outcome indicator will be updated.

Test outcome

A visual representation of the result of the test.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 42 of 145

Lookup Table toolbar

The Lookup Table toolbar works in conjunction with the Lookup Table Editor. You can show or
hide this toolbar by selecting View → Toolbars → Lookup Table from the menu bar.

Clear Lookup Table Editor

Clears the Lookup Table Editor of its current lookup table.

Open Lookup Table

Opens a previously saved lookup table.

Add Lookup Entry

Adds a sibling lookup entry immediately after the currently selected lookup entry. The
input parameter to which the entry refers is the Lookup Table Editor's currently selected
input parameter.

Add Child Lookup Entry

Adds a child lookup entry to the currently selected lookup entry. The input parameter
to which the entry refers is the Lookup Table Editor's currently selected input parameter.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 43 of 145

Node Hierarchy toolbar

You can show or hide this toolbar by selecting View → Toolbars → Node Hierarchy from the
menu bar.

Advance Node

Brings a node forward with respect to its siblings.

Defer Node

Sends a node backward with respect to its siblings.

Promote Node

Moves a node such that it becomes a sibling of its current parent node.

Demote Node

Moves a node such that it becomes a child of a current sibling node.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 44 of 145

Feature Tray

The Feature Tray contains all feature templates loaded into the Editor at start-up. These templates
include all out-of-the-box templates installed with the Absyntax framework plus any detected third-
party add-ins.

Select a template, then either drag it onto the design surface or, with the Feature Tray Tool
selected, click on the design surface at the location where a new feature is to be added.

The Feature Tray is shown by selecting View → Feature Tray from the menu bar.

Template categories list

The list of all known feature template categories is presented here.

Feature template category

Templates are categorised for ease of access. A template may appear in any number of
categories.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 45 of 145

Feature template

A feature template contains all the information necessary to create a feature on the design
surface. Hover the mouse over a template to show a tool-tip containing its description.

Selected template

The selected feature template is used by the Feature Tray Tool when creating new
features on the design surface.

Search

Find feature templates using the search facility at the bottom of the Feature Tray. Words
entered here are matched with a template's category, name, description and any
culture-specific keywords associated with the template.

Search results list

This list contains the feature templates that are deemed to match the search words.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 46 of 145

Explorer

The Explorer illustrates the hierarchical structure of the current project, containing nodes that
represent distinct features and connector proxies. The selected component can be renamed by
clicking on it. Alternatively, right-click on any node to show its context menu, from which other
operations are available. Double-clicking a node will open the containing view and cause its
viewport to pan and zoom to the component represented by the node.

The Explorer is shown by selecting View → Explorer from the menu bar or by clicking the
Explorer button in the Standard toolbar.

Project node

Represents either the current project or a project nested within the current project.

Inward-facing connector proxy node

This is usually a representation of one of a group's connectors, but facing in towards the
group's contained features so as to offer a means of connecting these features to the
outside world.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 47 of 145

Group node

Represents a group of features.

Feature node

Represents a feature.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 48 of 145

Explorer node context menu

Rename

Puts the selected node into edit mode, where it can be renamed.

Delete

Deletes the represented component from the project. If this option is disabled, the
represented component cannot be deleted.

Open View

Opens the view corresponding to the feature group that this node represents. (If the node
does not represent a feature group then this option is not displayed.)

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 49 of 145

Feature Group Views

The current project and each feature group therein has a design surface offering you the ability to
manage the content of the associated group. Design surfaces are presented in "views", with each
view being a tabbed document in the Editor's main window.

The view of an empty project appears as follows. The design surface includes connector proxies
for the project's entry- and exit-points. These proxies are similar to those used by configurable
feature groups, the only material difference being that a project's proxies cannot be deleted.

Some feature groups – for example, those that contain a user-defined operation to be applied to
each item in a collection – have similar constraints and a similar appearance, as shown below.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 50 of 145

The groups above are examples of groups that do not work in conjunction with the Connector Tray.
 In other words, their connector profiles are fixed. Hybrid groups exist – an example being the
MultiChannelGroup – that support both immutable inward-facing connectors and user-definable
connectors. Below is an example of such a group, in which user-defined connectors are included
to provide initialisation capabilities to the group.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 51 of 145

Filter Builder

The Filter Builder is a visual tool for creating, maintaining and testing Boolean expressions. The
Filter Builder's visual embodiment of a Boolean expression is the "composite filter", which is an
aggregation of one or more "filter elements". Each filter element encapsulates a simple Boolean
test to be performed on some value. The aggregations are realised by "filter groups", each of
which represents a Boolean operator such as "AND" and "OR" and can contain any number of
elements and groups.

The Filter Builder is often used in conjunction with the Filter Tray and the Composite Filter Cache.
It is shown by selecting View → Filter Builder from the menu bar.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 52 of 145

Creating a new filter

This is how the Filter Builder looks when it has no content and the data type has not been set.
 Filter elements and filter groups can be dragged onto the design surface from the Filter Tray;
previously saved composite filters can be dragged onto the design surface from the Composite
Filter Cache. Click on the links on the empty design surface to show their associated panels.

To create a new filter you must firstly specify the type of data that the filter will evaluate. With the
Filter Builder as the active document, select Filter → Filter Builder → Choose Data Type... from
the menu bar. This opens the Type Browser dialogue. Alternatively, drag a filter template from the
Filter Tray onto the Filter Builder: this will also open the Type Browser if the chosen template can
be applied to more than one data type.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 53 of 145

Anatomy of a composite filter

All composite filters must have a root node. They should also have at least one filter element
(which may be the root node itself), otherwise they would serve little purpose. They may also
contain any number of filter groups.

When a composite filter is evaluated, the root node is tested against the supplied data. If the root
node is a filter group, it returns a Boolean value based on the outcome of the tests of its child
nodes. Any child feature group is also tested in this way.

In order to save a composite filter (or any part thereof), select the node that will be the root of the
saved filter and drag it onto the Composite Filter Cache (or click Add To Cache from the Filter
toolbar), where a copy of the sub-node hierarchy is stored. If, by the same stroke, you want to
replace an existing cached filter, drop the dragged node onto it. You will be prompted to confirm
such operations.

Filter data type

Denotes the type of data to be evaluated by the composite filter. This, in turn, determines
the set of available filter templates and cached composite filters that may be used.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 54 of 145

Filter group

A collection of filter elements and other filter groups. Filter groups allow you to create a
hierarchical aggregate of individual tests. An evaluation of a filter group is really an
evaluation of each of its children. The overall result depends on the nature of the filter
group itself. For example, an AND group will return true only if all of its child nodes'
constraints are satisfied by the test data. An OR group, on the other hand, will return true
if any of its child nodes' constraints are satisfied.

In this example, the AND group will return true when evaluated with an integer of value in
the range 1 to 10 inclusive.

The description of a filter group is a composite of the descriptions of each of its children.

Filter element

A specific test on an item of data to be evaluated. To edit the operand value (if there is
one), select the node. This will display the appropriate value editor for the current data
type: use this to change the operand value. Alternatively, the Properties panel can be
used: the relevant property is named TestOperand.

Selected node

The selected node is the target of Filter Builder operations (such as "test" and "move"
actions).

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 55 of 145

Filter Tray

The Filter Tray contains all filter-related templates loaded into the Editor at start-up. These
templates include all out-of-the-box templates installed with the Absyntax framework plus any
detected third-party add-ins.

Select a template and drag it onto the Filter Builder's design surface in order to start editing a new
composite filter. Or, drag a template onto an existing filter group in order to add a new element to
that group.

The Filter Tray is shown by selecting View → Filter Tray from the menu bar or by clicking the
hyperlink on the Filter Builder's empty design surface.

Filter Elements list

Lists all available filter element templates that match the Filter Builder's currently selected
data type. If no data type has been specified then all available templates are listed.

Filter Groups list

Lists all available filter group templates.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 56 of 145

Composite Filter Cache

The Composite Filter Cache contains all your saved composite filters.

Select a filter and drag it onto the Filter Builder's design surface in order to start editing a copy of
it. Or, drag a filter onto an existing filter group in order to add a copy of it to that group. You can
even drag a composite filter onto a feature that accepts filters (such as the Test feature), as long
as the data type of the filter is the same as the data type predicated by the feature.

The selected filter can be renamed by clicking on it. Alternatively, right-click on any filter to show
its context menu, from which other operations are available.

The Composite Filter Cache is shown by selecting View → Composite Filter Cache from the
menu bar or by clicking the hyperlink on the Filter Builder's empty design surface.

Composite filters list

Lists all available cached composite filters that match the Filter Builder's currently selected
data type. If no data type has been specified then all available filters are listed.

Description

A description of the selected composite filter.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 57 of 145

Lookup Table Editor

The purpose of a lookup table is to return a set of one or more output parameter values in
response to the receipt of a set of one or more input parameter values. It is possible to achieve
this kind of behaviour by other means (a database table, for example) but typically only if the set
of input parameters is small and the domain of each parameter is likewise small. Consider using
lookup tables if any of the following apply:

• you have multiple input parameter values to evaluate;
• the domain of any one input parameter value is large;
• you would like to use range-based tests or tests other than "equals";
• there are many combinations of input parameter values that return the same set of output

parameter values;
• you need to test, interactively, that the expected set of output parameter values is being

returned for a given set of input parameter values;
• you wish to reduce the likelihood of errors in your data definitions;
• your lookup data is likely to be modified, even occasionally.

Lookup tables are ideal for facilitating dictionary-style lookups (in which you supply a key datum
and receive a value in return). They can be used to perform binary searches on a set of sorted
data. They also support complex lookup scenarios involving multiple input parameter values and
hierarchical tests. They are particularly advantageous in scenarios where it is acceptable for one
or more input parameter values to be omitted. Once a lookup table has been created, it may be
harnessed by a Lookup feature for use in a project.

The Lookup Table Editor is shown by selecting View → Lookup Table Editor from the menu bar.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 58 of 145

Anatomy of a lookup table

Input parameter definitions

Use this section to define your lookup table's input parameters.

Output parameter definitions

Use this section to define your lookup table's output parameters.

Testing panel

Use this section to test your lookup table.

Lookup entry list

Your lookup table's entries are defined here.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 59 of 145

Input parameters

Use this panel to define the set of input parameters available to your lookup table.

Name

Use this field to define the name of each input parameter.

Type

Lists the data type of each input parameter.

Change type

Opens the Type Browser, allowing you to change the data type of the associated
input parameter. The values of all existing lookup entries that refer to this input parameter
will be converted.

Add parameter

Adds a new, default input parameter to the set.

Delete parameter

Deletes the associated input parameter. All existing lookup entries that refer to this
input parameter will be deleted. You will be prompted to confirm this action. Note that a
lookup table must have at least one input parameter, so you will not be able to delete the
sole remaining parameter.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 60 of 145

Selected parameter

The selected parameter is used when adding a lookup entry.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 61 of 145

Output parameters

Use this panel to define the set of output parameters for which your lookup table will return values.

Name

Use this field to define the name of each output parameter.

Type

Lists the data type of each output parameter.

Default value

Check this box if you want your lookup table to output a set of values in instances when
none of the table's entries matches a particular set of input values. You will be able to
specify the default value of each output parameter.

Change type

Opens the Type Browser, allowing you to change the data type of the associated
output parameter. The values of all existing lookup entry output values that refer to this
output parameter will be converted.

Add parameter

Adds a new, default output parameter to the set and creates a default value for each
lookup entry defined as returning a value.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 62 of 145

Delete parameter

Deletes the associated output parameter. All existing lookup entries will have values
pertaining to this output parameter removed. You will be prompted to confirm this action.
Note that a lookup table must have at least one output parameter, so you will not be able
to delete the sole remaining parameter.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 63 of 145

Testing

Use this panel to to test your lookup table. None of the edits you make in this panel affects the
lookup table itself.

Input

When inputting values to a lookup table, you do not necessarily need to supply values for
all input parameters. Uncheck those parameters for which values are not to be supplied
in tests.

Input value

Use this field to specify the values of input parameters in tests.

Find

Click this button to pass the set of input parameter test values to the lookup table and
obtain the result.

Test result

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 64 of 145

This button's graphic indicates the result of a test. A green tick indicates that either a
lookup entry was matched with the input parameter test values or the lookup table's
default values were returned (if such values are defined). A red "no entry" symbol
indicates that no match was found and the lookup table did not return any default values.

This is a bistate button: when it is in the checked state (as shown here), a matching test
will set the selected lookup entry to be the matching entry. You may want to uncheck the
button if, for example, you are editing a large lookup table and do not want the currently
selected lookup entry to be changed during a test.

Output

Lists the lookup table's output parameters.

Output value

Lists the output parameter values obtained from the most recent test.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 65 of 145

Lookup entries

A lookup table's capabilities are driven by its lookup entries. Each and every entry defines a
comparison test to be performed on a specific input parameter value. For example, suppose a
lookup table defines an integer input parameter named "Hour" and contains an entry that refers to
said input parameter. If the entry's comparison test is "greater than or equal to 7", this means that
the entry is deemed to be matched whenever it is presented with a set of input parameter values
that include one named "Hour" with a corresponding integer value of 7 or higher.

A lookup entry may itself contain lookup entries. It may also define a set of output parameter
values. If it does, the lookup table may return these values if the entry is matched with an input
parameter value. Whether it will return them depends on whether the entry contains a child entry
that also matches an input parameter value. In all instances, though, an entry can only be a
match-candidate if both it and all of its ancestors satisfy their comparison tests.

Use the Lookup Table toolbar to add lookup entries to the list. A new entry is also added
automatically (and placed in edit mode) when you press Return or Enter while editing the last
lookup entry in the list. (This behaviour makes it easy to work solely with the keyboard.)

To edit a lookup entry, select it and click it to put it into edit mode. Alternatively, press Return or
Enter and the selected entry will enter edit mode. To commit changes, press Return or Enter
again. To cancel, press Esc. The Tab key cycles keyboard focus over the editable fields and, in
conjunction with the Shift key, works in reverse too. Any lookup entry can be relocated by using
the Node Hierarchy toolbar buttons or the relevant context menu items. Entries may also be cut,
copied, pasted and deleted.

When a lookup operation is performed on a lookup table, each entry is tested in turn. Where
an entry matches the incoming data, the entry's children are then tested (if there are any).
When an entry is matched that defines a set of output parameter values, only its child entries are
subsequently tested: if none of these child entries can be matched then the aforementioned output
parameter values are returned by the lookup table and no further entry-testing takes place.

Example 1

In the above screenshot the lookup entries belong to a lookup table that serves to determine
whether a specific hour of a specific day constitutes a rush-hour period. The entries are such that

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 66 of 145

if an input parameter value for "Day" is 0 then the lookup table will return a RushHour value of
"False". This is because:

1. the row-1 lookup entry's comparison test is passed;
2. said lookup entry defines an output parameter value, this being "False";
3. said lookup entry has no children to test.

Example 2

Now suppose that an input parameter set is presented to the lookup table that contains a value of
3 for "Day". The lookup table will return a RushHour value of "False". This is because:

1. the row-1 lookup entry's comparison test fails, so the next sibling is tested;
2. the row-2 lookup entry's comparison test is passed;
3. said lookup entry defines an output parameter value, this being "False";
4. said lookup entry has two children to test but the absence of an "Hour" value in the input

parameter set means that both tests fail.

Example 3

This time an input parameter set is presented that contains a value of 4 for "Day" and a value of 17
for "Hour". The lookup table will return a RushHour value of "True". This is because:

1. the row-2 lookup entry's comparison test is passed;
2. the comparison test of the second child of said lookup entry (row 4) is passed;
3. said lookup entry defines an output parameter value, this being "True";
4. said lookup entry has no children to test.

Example 4

This time an input parameter set is presented that contains a value of 6 for "Day" and a value of 10
for "Hour". The lookup table will return a RushHour value of "False". This is because:

1. the row-1 and row-2 lookup entries' comparison tests fail, so the next sibling (row 5) is tested;
2. rows 3 and 4 are ignored because they are children of an entry (row 2) for which the

comparison test failed;
3. the row-5 lookup entry's comparison test is passed;
4. said lookup entry defines an output parameter value, this being "False";
5. said lookup entry has no children to test;
6. in this case the "Hour" input value proves redundant.

Example 5

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 67 of 145

Finally, an input parameter set is presented that contains a value of 39 for "Day". The lookup table
will return no match. This is because:

1. none of the rows' comparison tests is passed;
2. the lookup table itself does not define a default value.

A refinement

The lookup table used in these examples can be refined, as shown here.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 68 of 145

Editing a lookup entry

The above example shows a lookup entry in the process of being edited.

Selected input parameter

This drop-down contains a list of the lookup table's defined input parameter values. Select
the one that applies to the lookup entry.

First operator

This drop-down contains a list of all valid comparison operators. Select the one that
reflects the nature of the test to be performed by the lookup entry.

First operand

This defines the value to be used by the first operator when the lookup entry is required to
test the value of the selected input parameter.

Range operator

This drop-down contains a list of all valid "range" comparison operators. Select the one
that reflects the nature of the range test to be performed by the lookup entry. If a range
test is not required then select the blank item. This has the effect of clearing and disabling
the range operand.

Range operand

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 69 of 145

This defines the value to be used by the range operator when the lookup entry is required
to range-test the value of the selected input parameter.

Returns value

Check this box if output parameter values are to be defined for the lookup entry.

Output parameter value

This defines the value to be returned for the associated output parameter ("RushHour", in
this example) in the event that the lookup entry is matched by the lookup table. A column
is included for each output parameter defined by the lookup table.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 70 of 145

Refined example

The lookup table used in the previous examples serves to illustrate the essential behaviour of
all lookup tables. However, it is worth noting that this particular sample can be improved upon.
 Similar results can be achieved by deleting two of the five entries, configuring another not to
return a value and defining a default value for the table, as shown below. Of course, with this
approach the lookup table is guaranteed to return a match every time (meaning that example 5
would instead return a value). Be careful when declaring a lookup table as having a default value.
 In example 5, an input value of 39 is invalid (the domain of day values is 0 through 6) and in this
case it may be more appropriate to return no match.

With the structure shown above, if either an incoming "Day" value is not in the range 1 to 5 or an
incoming "Hour" value is not any of 7, 8, 9, 10, 16, 17 or 18 then the lookup table's default value
("False" in this case) is returned.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 71 of 145

Properties

The Properties panel works on behalf of the currently selected object or objects in the active
document or another of the Editor's panels. If a single object is selected, the panel will display
the object's properties and their values. If multiple objects are selected, the panel will display
those properties that are common to all of the objects. In such cases, common values will also be
displayed.

Although the descriptions in this section relate to the Editor's main property grid, some of the
Editor's dialogue windows also make use of property grids and they all operate in the same way.

The Properties panel is shown by selecting View → Properties from the menu bar or by clicking
the Properties button in the Standard toolbar.

Type

Displays the type of the selected target object or objects. If multiple different types are
selected, this label displays "Various".

Category name

Properties are categorised. This label displays the name of a category.

Property name

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 72 of 145

The name of one of the target object's properties. Hover the mouse over a property's
name to show a tool-tip containing its description.

Value

A representation of the value of one of the target object's properties. If the property value
is not read-only, you may change its value here. If multiple objects are selected, the
property value for each selected object will be changed.

Value editor

Press this button to display a dialogue editor that will allow you to maintain the value
of the associated property. This button is only visible for properties whose values cannot
readily be expressed using a string value alone.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 73 of 145

Project Parameters

A project declares zero or more "parameters", these being preset values that the project's various
features can use on demand. Such parameters are expressed by the EditableGate feature, and
the inclusion of an EditableGate instance in a project is equivalent to the inclusion of a parameter.

A parameter is deemed to belong to its first parent project. Thus the root project and every project
instance nested therein may each declare parameters. In this way a project is considered to
be a "source" of parameters. The Project Parameters panel makes use of this when displaying
collections of parameters.

Parameters have names and values, and the EditableGate feature supports this paradigm.
 The Project Parameters panel makes it easy to manage parameter attributes in one place.
Furthermore, parameters may be harnessed by other features (namely the ParameterInitialiser
and the ParametersPrompt) to perform parameter-driven operations at runtime.

The Project Parameters panel is shown by selecting View → Project Parameters from the menu
bar or by clicking the Project Parameters button in the Standard toolbar.

Toolbar

The toolbar supports actions in respect of the parameter list.

Source parameter list

Displays the list of parameters found for the currently selected source.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 74 of 145

Name

Use this field to assign a name to each parameter.

Description

Use this field to assign a description to each parameter. The description will help users to
understand the purpose of the parameter.

Value

Use this field to assign a value to each parameter.

Exposed

Use this field to indicate whether a parameter is to be exposed at runtime via the
ParametersPrompt feature.

Constraints

Use this field to apply constraints to the value of any parameter. At runtime, if the user is
prompted to override parameter values via the ParametersPrompt feature, all
constrained parameters' values must satisfy their constraints before the overridden values
will be accepted.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 75 of 145

Project Parameters toolbar

Go To Current

Actions the currently selected parameter in accordance with the selections for Auto
Pan-And-Zoom and Auto Select.

Go To Previous

Selects the previous parameter in the list and actions it in accordance with the
selections for Auto Pan-And-Zoom and Auto Select.

Go To Next

Selects the next parameter in the list and actions it in accordance with the selections
for Auto Pan-And-Zoom and Auto Select.

Auto Pan-And-Zoom

When selected, causes the actioned parameter to be brought into view and scaled
such that it fills the viewport.

Auto Select

When selected, causes the actioned parameter to be selected.

Source

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 76 of 145

From the drop-down, select the project that is to be the source of parameters for the
parameter list.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 77 of 145

Connection Manager

As well as being able to create connections using the Connection Tool, you can use the
Connections Manager to achieve the same results. If you want to make multiple connections to
the same connector or the design surface contains a lot of features, the Connections Manager
makes the task much easier. It also helps to visualise the order in which a socket's connections
are triggered, something that is fundamental in determining your project's overall behaviour.

From the design surface, select a single connector. The Connections Manager will then display
a list of those connectors currently connected to the selected connector and a list of those
connectors that may be connected to the selected connector.

The Connection Manager panel is shown by selecting View → Connection Manager from the
menu bar or by clicking the Connection Manager button in the Standard toolbar.

Toolbar

The toolbar supports actions in respect of both lists.

Connected list

A list of all connectors currently connected to the selected connector.

Available To Connect To list

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 78 of 145

A list of those connectors that may be connected to the selected connector.

Connector

Combines a connector's user-assigned name and its host feature's name. An arrow
indicates the direction of communication (left to right = outgoing signals or data, right to
left = incoming signals or data); the arrow's colour indicates whether transmission is
guaranteed.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 79 of 145

Connection Manager toolbar

Go To Current

Actions the currently selected item in the Connected list in accordance with the
selections for Auto Pan-And-Zoom.

Go To Previous

Selects the previous item in the Connected list in the list and actions it in accordance
with the selections for Auto Pan-And-Zoom.

Go To Next

Selects the next item in the Connected list in the list and actions it in accordance with
the selections for Auto Pan-And-Zoom.

Auto Pan-And-Zoom

When selected, causes the actioned connection to be brought into view and scaled
such that it fills the viewport.

Disconnect Selected

Breaks connections between the selected connector and those connectors selected
in the Connected list.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 80 of 145

Connect Selected

Creates connections between the selected connector and those connectors selected
in the Available To Connect To list.

Advance Selected

Promotes those connectors selected in the Connected list such that connections
between them and the selected socket are triggered earlier in the socket's trigger
sequence.

Defer Selected

Demotes those connectors selected in the Connected list such that connections
between them and the selected socket are triggered later in the socket's trigger
sequence.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 81 of 145

Output

The Output panel is used by the Editor to display text relating to a project's execution. Runtime
information and error messages are displayed here, coupled with any text directed at the Output
feature.

Any strings written to the console at runtime using either Console.Write or
Console.WriteLine will be redirected to the output panel.

The Output panel is shown by selecting View → Output from the menu bar or by clicking the
Output button in the Standard toolbar.

Clear All

Clears the output panel of text.

Toggle Word Wrap

When selected, causes text in the output panel to be wrapped.

Output text

Displays all output text from an executing project.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 82 of 145

Breakpoints

It is often important to be able to see what your project is doing while it is doing it. This will enable
you to make more informed changes to a project and more quickly realise the project's objectives.
 To this end, the Editor allows you to pause a project while it is running. After a pause request is
issued, each thread is halted when it next emerges from a feature. At this point, any data that the
thread is carrying can be examined in the Runtime Data panel and, under certain circumstances,
may even be changed.

Breakpoints can be set on sockets. A breakpoint serves to block threads in much the same way
as a pause request but with the advantage that it is location-specific. When a thread is blocked
by a breakpoint, all other threads will also be paused when they next emerge from their features.
 To set a breakpoint you will need to open the view that contains the target socket. Then, with
the Pointer Tool selected, double-click the target socket on the design surface. Alternatively, with
the target socket or sockets selected, from the menu bar choose Debug → Breakpoint → Set
Breakpoint or from the context menu of either the Pointer Tool or Connection Tool, choose Debug
→ Breakpoint. At runtime you may also set a breakpoint at a location where there is a paused
thread, by clicking Set Breakpoint on the toolbar.

By default, breakpoints always block threads. However, they can be configured to block only when
certain conditions arise. These conditions are functions of either:

• the number of times a thread has passed through a breakpoint;
• the state of the data being carried by a thread.

As well as enabling you to pause threads, the Editor supports thread-stepping and thread-
resumption for:

• individual threads;

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 83 of 145

• all threads waiting at selected breakpoints;
• all project threads.

The Breakpoints panel is shown by selecting View → Breakpoints from the menu bar or by
clicking the Breakpoints button in the Standard toolbar.

Toolbar

The toolbar supports actions in respect of the breakpoints list.

Breakpoints list

A list of all breakpoints. At runtime this may include locations without breakpoints at which
threads are paused.

Enabled

A checked box indicates an enabled (i.e. active) breakpoint. An unchecked box indicates
a breakpoint that will not block threads.

Location

A description of the location of the associated breakpoint.

Behaviour

A description of the behaviour of the associated breakpoint.

Threads

A list of the identifiers of threads currently paused at the associated breakpoint.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 84 of 145

Breakpoints toolbar

Go To Current

Actions the currently selected breakpoint in accordance with the selections for Auto
Pan-And-Zoom and Auto Select.

Go To Previous

Selects the previous breakpoint in the list and actions it in accordance with the
selections for Auto Pan-And-Zoom and Auto Select.

Go To Next

Selects the next breakpoint in the list and actions it in accordance with the selections
for Auto Pan-And-Zoom and Auto Select.

Auto Pan-And-Zoom

When selected, causes the actioned breakpoint to be brought into view and scaled
such that it fills the viewport.

Auto Select

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 85 of 145

When selected, causes the actioned breakpoint to be selected.

Set Breakpoint

Sets a breakpoint at the location of the paused thread.

Edit Breakpoint

Opens the Breakpoint Editor, allowing you to manage the conditions under which the
selected breakpoint will interrupt threads.

Remove Selected Breakpoints

Removes the selected breakpoints from their locations.

Remove All Breakpoints

Removes all breakpoints from their locations.

Enable/Disable All Breakpoints

Toggles the enabled state of all breakpoints.

Run/Resume

Starts executing the current project or resumes all of a project's paused threads.

Pause

Pauses all threads in the currently executing project.

Step All Threads

Steps all paused threads in the currently executing project.

Step Selected Breakpoint Threads

Steps all threads at the selected breakpoints.

Step Selected Threads

Steps all selected threads.

Resume Selected Breakpoint Threads

Resumes all threads at the selected breakpoints.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 86 of 145

Resume Selected Threads

Resumes all selected threads.

Stop

Aborts the currently executing project.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 87 of 145

Breakpoint Editor

The Breakpoint Editor dialogue is used manage the interrupt behaviours associated with a
breakpoint. Such behaviours collectively determine whether a thread should be blocked: all active
(i.e. enabled) behaviours must be satisfied in order for this to happen.

Interrupt behaviours may be added and removed. Included behaviours may also be configured
using a property grid.

Available Behaviours list

A list of the behaviour templates available for selection.

Included Behaviours list

A list of the behaviours already included with the breakpoint being edited.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 88 of 145

Property grid

The set of the selected included behaviour's properties and their values.

Selected behaviour description

A description of the selected behaviour template.

Add button

Click this button to add an instance of the associated behaviour template to the
breakpoint being edited. This has the effect of adding a new, default instance of the
behaviour type to the Included Behaviours list.

When adding a new Conditional Pause Behaviour, the Type Browser will be opened so
that you can specify the type of data that the behaviour is to evaluate. Note that there is
currently no means of coupling the type of data to be evaluated with the data type of the
associated socket: if you choose a data type that does not match that of the socket, the
test encapsulated by the behaviour will not be performed.

Remove button

Click this button to remove the selected behaviour from the breakpoint being edited.

Enabled

When checked, the associated behaviour is active, meaning that it will be evaluated when
the runtime is determining whether to block a thread. To have the behaviour ignored,
uncheck this box.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 89 of 145

Runtime Data

Where a data-carrying thread is paused during project execution, its data may be examined
interactively by using the Runtime Data panel. For each such thread there will be a location name
(i.e. the name of the socket that it is currently paused at).

As explained here, objects can be composed of other objects, so we can think of data as a
hierarchy of information. The Runtime Data panel reflects the hierarchical nature of object
composition by allowing you to "expand" data into its constituent parts, as shown in the above
example.

The Runtime Data panel is shown by selecting View → Runtime Data from the menu bar or by
clicking the Runtime Data button in the Standard toolbar.

Location name

The name of the location at which the root object is currently sited.

Element placeholder name

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 90 of 145

The name of an element of the parent object. The various icons used to portray these
elements are:

Denotes a property of the parent object.

Denotes an enumerated item (i.e. an item that belongs to a collection). Such elements are
accompanied by names of the form [n], where n is a unique, sequential, zero-based index
number.
Denotes an attached property of the parent object.

Value

A textual representation of the associated element's value, or "null" if no element exists. If
the element's placeholder is not read-only, the element may be changed by clicking on
this field.

Type

The associated element placeholder's allowed data type.

Thread ID

The identifier of the thread with which the data is associated. All properties of the root
object share the same thread as that of the root object itself.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 91 of 145

Log File Listing

Log files are produced when a project is executed. Entries may be written to these log files during
execution and, if they are, you can easily view the contents of the files by opening the Log File
Listing (select View → Log File Listing from the menu bar). The list of files is presented in order
of descending last-modified date. Entries in red indicate files that have changed since the Editor
was opened. Double-click on any entry to open its contents as a document.

The files themselves are accessible via the file system. The path of their containing directory may
be obtained by hovering the mouse over the folder item in the list: the resulting tool-tip yields the
path.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 92 of 145

Find

You can search for items in the current project that match your text-based search criteria. To
open the Find dialogue, press Ctrl-F or select Edit → Find... from the menu bar. Clicking Find All
performs the search and displays the results in the Find Results panel.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 93 of 145

Find Results

The Find Results panel contains a list of items in the current project that match your text-based
search criteria. It is shown by either performing a search or selecting View → Find Results from
the menu bar.

Toolbar

The toolbar supports actions in respect of the list of found items.

Name

The name of the associated matched item.

Type

The type of the associated matched item.

Description

A description of the associated matched item.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 94 of 145

Find Results toolbar

Go To Current

Actions the currently selected item in accordance with the selections for Auto Pan-
And-Zoom and Auto Select.

Go To Previous

Selects the previous item in the list and actions it in accordance with the selections
for Auto Pan-And-Zoom and Auto Select.

Go To Next

Selects the next item in the list and actions it in accordance with the selections for
Auto Pan-And-Zoom and Auto Select.

Auto Pan-And-Zoom

When selected, causes the actioned item to be brought into view and scaled such
that it fills the viewport.

Auto Select

When selected, causes the actioned item to be selected.

Refresh

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 95 of 145

Performs the last find operation again and refreshes the list with the new matched
items.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 96 of 145

Re-entrant Path Summary

Re-entrant paths are described here. The Re-entrant Path Summary is shown by selecting View
→ Re-entrant Path Summary from the menu bar or by clicking on the relevant link in the Status
bar. Note that if there is no such link in the Status bar then that is an indication that your project
has no re-entrant paths.

Toolbar

The toolbar supports actions in respect of the re-entrant paths list.

Re-entrant paths list

The list of detected re-entrant paths.

Group

The fully-qualified name of the feature group that contains the associated re-entrant path.

Protected?

Indicates whether the associated feature group is a password-protected project. Any such
project is always listed, regardless of whether it actually contains any re-entrant paths,
merely to warn that there may be re-entrant paths hidden from you. The Editor cannot
reveal the contents of secure projects.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 97 of 145

Path

For projects that are not protected, this field shows the chain of features and their
interconnections that collectively represent a re-entrant path.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 98 of 145

Re-entrant Path Summary toolbar

Go To Current

Actions the currently selected path in accordance with the selections for Auto Pan-
And-Zoom and Auto Select.

Go To Previous

Selects the previous path in the list and actions it in accordance with the selections
for Auto Pan-And-Zoom and Auto Select.

Go To Next

Selects the next path in the list and actions it in accordance with the selections for
Auto Pan-And-Zoom and Auto Select.

Auto Pan-And-Zoom

When selected, causes the actioned path to be brought into view and scaled such
that it fills the viewport.

Auto Select

When selected, causes the actioned path to be selected.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 99 of 145

Re-entrant path detail

The above shows an example of the chain of features and their interconnections that collectively
represent a re-entrant path. Note that an overlapping path is always shown, meaning that the
feature and connectors at the start and end of the chain are the same.

Feature

Represents a feature in the re-entrant path. Click it to action the feature.

Connection

Represents a connection in the re-entrant path. Click it to action the connection.

Connector

Represents a connector in the re-entrant path. Hover the mouse over it to show a
tool-tip containing its user-assigned name. Click it to action the connector.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 100 of 145

Configuration Manager

The Configuration Manager identifies services that need information from you before they can
operate correctly. For any given service you will only need to enter the information once because it
is cached on your computer under your account. Note that the Editor examines the current project
to determine whether any configurable services will be required and, if at least one such service
exists that has yet to be configured, you will be prompted via a link in the Status bar.

The Configuration Manager is shown by selecting View → Configuration Manager from the menu
bar or by clicking on the aforementioned Status bar link. Note that if there is no such link then that
is an indication that no services require configuring.

Status

Provides a visual indication as to the status of the configurable service. Those with
an amber warning triangle require you to supply information.

Description

A description of the configurable service.

Configure button

Press this button to open the Configure dialogue.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 101 of 145

Configure

Configurable properties list

A list of one or more configurable service properties that require you to specify a value.

Name

The name of a property for which you must supply a value.

Description

The description of a property for which you must supply a value.

Value

The supplied value. A visual cue is provided to indicate whether the specified value is or
appears to be valid.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 102 of 145

Connector Tray

The Connector Tray is used in conjunction with configurable feature group views. Whenever
you want to add an input or output to a configurable feature group, click and drag the relevant
connector template onto the design surface. If you have chosen a data connector then the Type
Browser will open, prompting you to select the type of data that the connector is to transmit. Input
connectors transmit signals and data from outside the group to the group's contained features;
output connectors transmit signals and data from within the group to features that are connected to
the group. You could think of these connectors as channels of signals and data operating across
the group's boundary.

The result of such an operation is that a connector is added to the connector profile of the
containing feature group. Furthermore, a proxy for this connector appears on the design surface
and it this proxy that enables you to connect the group's contained features to the group's
sibling features. Also, by opening the view of the group's parent you can see the group's added
connectors and use them to make connections with other features.

The Connector Tray is shown by selecting View → Connector Tray from the menu bar.

Below is an example of a project, "AreaOfCircle", that contains two features. One of them,
"CalcArea", is a Group – a feature representing a configurable feature group. Currently CalcArea
has neither inputs nor outputs and in this form it serves no purpose.

Below is a view of the CalcArea group. Connectors named "Radius" and "Area" have been added
using the technique described above and wired up to a Formula feature whose job is to perform
some calculation. Looking at this view you might reasonably infer the following sequence of
events:

1. a value representing a circle's radius is received by the group;
2. this value is used to set the Formula's input parameter, "r", and then invoke the calculation;
3. the result of the calculation is passed out of the group.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 103 of 145

The effect of adding the aforementioned connectors to the CalcArea group can be seen in the
parent view. The group is now ready to be wired up.

Below is a view of the finished project. The CalcArea group thus represents an operation, the
details of which are hidden at this level. Furthermore, the operation supports clearly defined inputs
and outputs. All of which serves to demonstrate one of the key benefits of configurable feature
groups.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 104 of 145

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 105 of 145

Type Browser

The Type Browser dialogue is opened whenever the Editor needs you to select a type. The
dialogue consists of two panes. The left-hand pane contains categorised lists of all types known
to the Editor, along with a search box for narrowing down a type search. The right-hand pane
contains the selected type, rendered as a hierarchical tree. All nodes in this tree that are
annotated with the words "awaiting selection" require you to choose suitable types, and you will
not be allowed to proceed until you have resolved all of them. Select each such node in turn, then
search for and choose the required type.

Under certain circumstances, as well as being able to select types from the Type Browser's known
type lists you can also select types using the connector data type sampler tool . This tool allows
you to browse the current project and "pick" a type from any connector therein that supports the
transmission of data. When the dropper turns green , the connector over which the cursor is
positioned may have its type sampled by clicking on it. When the dropper turns red , either the
connector does not support data or its data type is not eligible for selection.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 106 of 145

Known types

A collection of categorised lists of all known types.

Search

Find types using the search facility at the bottom of the dialogue. Words entered here are
matched with a type's namespace and name. The filtered results are displayed in the
"known types" lists above. (Available types are also filtered according to any constraints
associated with the node selected in the type builder panel.)

Type builder panel

The type to be returned by the dialogue is built here.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 107 of 145

Known type lists

The known type lists form part of the Type Browser dialogue.

Type categories collection

A tab collection, each tab representing a categorisation of types. A type may appear in
multiple categories. Notable categories include:

Primitive Types The most commonly used types, including strings and number types.
Current Project
Connector Types

The set of unique types supported by data connectors in the current
project.

Native Types Types defined by the various software libraries of the Absyntax
framework.

Type list

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 108 of 145

A list of types for the selected category, qualified and ordered by namespace.

Select type button

Click this button to specify the associated type as the type for the selected node in the
type builder panel. Alternatively, double-click any type in the type list.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 109 of 145

Type builder panel

The type builder panel forms part of the Type Browser dialogue. It presents a root type that must
be resolved. To achieve this, types are found and selected using the known type lists. Sometimes
a single type will be all that you require. However, more complex root types can be built and these
are presented in the panel as a type node hierarchy, an example of which is shown above. The
description associated with each node will help you to understand what it is you are being asked
to select. Additionally, not all types will necessarily be eligible for selection for a given node. So
when you select a node, the types available for selection may be a subset of the known types.

Resolved type name

The name of the fully resolved type.

Locked symbol

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 110 of 145

Indicates that the type associated with the node cannot be changed.

Pending symbol

Indicates that the type associated with the node cannot be selected until other
nodes' types have been selected.

Description

A description of the type requiring selection.

Awaiting selection indicator

Indicates that a type has yet to be selected. When a type has been selected, its name is
displayed here instead.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 111 of 145

Options

You can specify your Editor preferences via the Options dialogue, which is shown by selecting
Tools → Options... from the menu bar. Any values you set are stored and used for subsequent
sessions.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 112 of 145

Options - General

Default working directory

This option specifies the path of the directory from which projects are opened and to which
they are saved by default.

Undoable actions

This option specifies the maximum number of undoable actions that the Editor is to cache.
 The higher the number, the more resources the Editor will require of your computer.

Recent projects

This option specifies the maximum number of projects to be presented in the Recent
Projects list (select File → Recent Projects from the menu bar).

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 113 of 145

Automatically reroute occluded connections

When a feature is added or moved on top of existing connection paths on the design
surface, this option determines whether the Editor reroutes the affected connections.

New sockets are asynchronous by default

This option determines whether newly created sockets are flagged as asynchronous by
default.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 114 of 145

Options - View

Show scroll bars

Select this option if you want scroll bars to appear in all views.

Allow non-guaranteed data connections

Select this option if you want the Connection Tool and the Connection Manager to allow
connections to be created between data connectors for which a non-guaranteed data
conversion would be required.

Glide pan-and-zoom operations

Select this option if pan-and-zoom operations are to be animated.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 115 of 145

Rendering intent

This option determines whether connections are rendered above or below features in a
view.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 116 of 145

Options - Grid

Show grid

Check this option if you want a grid to be visible on a view's design surface.

Snap to grid

Check this option if you want shapes to be snapped to a grid (visible or otherwise) on a
view's design surface.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 117 of 145

Maximum cell size

Grid cells resize themselves to counter the effects of zooming. This option specifies the
maximum size (in millimetres) that a grid cell can reach before it is subdivided.

Cell division number

This option specifies the number of cells horizontally and vertically that a cell divides into
when its maximum size is reached.

Snap resolution

This option defines the distance between a grid's snap points.

Line weight

This option specifies the thickness of the lines used to render a grid.

Line colour

This option specifies the colour to be used to render grid lines.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 118 of 145

Project Settings

Settings can be obtained for and applied to the current project. The Project Settings page is
shown by selecting View → Project Settings from the menu bar.

Entry Data

This field is enabled if your project's entry-point requires data. Refer to the rules
governing the specification of values in the Absyntax Batch Client's data option for more
details.

Enable Visual Feedback

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 119 of 145

Some features can take a relatively long time to complete their operations. While
executing a project in the Editor, you may want to receive visual cues indicating whether
such features are busy, in which you case you should select this option.

Project Signature

This field, which is evaluated every time the page is activated, shows the current project's
signature.

Copy to Clipboard

Click this button to copy the project signature to the clipboard, making it available for use
in other contexts (such as in conjunction with the Absyntax Batch Client).

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 120 of 145

Calculation Builder

The Calculation Builder dialogue is most commonly used in conjunction with the Formula feature.
 It facilitates the creation and maintenance of mathematical expressions without the need to
understand any proprietary syntax, operator precedence, use of parentheses and the like.

Operand Tray

The list of available operators and operands that may be combined on the design surface
when building a mathematical expression.

Toolbar

The toolbar supports various design surface actions.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 121 of 145

Description

A representation of the current mathematical expression.

Design surface

The design surface on which you build your mathematical expressions.

Mathematical Expressions

Mathematical expressions take the form of a hierarchy of operators and operands. An operator is
a mathematical operation that uses one or more operands to calculate a value. An operand is a
value on which a mathematical operation is performed. Importantly, an operand can itself be an
operator, meaning that its value must be calculated.

For example, the following expression has two "add" operators and three constant values (1, 2 and
5):

y = 1 + 2 + 5

The first operator adds 1 and 2, then passes the result (3) to the second operator, whose job is
then to add 3 and 5.

In the Calculation Builder, such an expression would look like this:

In Absyntax there are two kinds of operators: unary operators and binary operators. Unary
operators have just one operand. An example is the Square Root operator. Binary operators
have two operands and the Add operator is such an example.

An operand of high importance is the Parameter. Parameters represent inputs to an expression
that must be supplied before the expression can be evaluated. You assign a name to each
Parameter. Multiple parameters may appear in the node hierarchy and parameters with the same
name can also be used. Where multiple Parameter nodes share the same name, they will be
assigned the same value when the expression is evaluated.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 122 of 145

Finally, there is a group of operands whose values are fixed. Such operands are known as
constants. The values of most of these operands are defined by Absyntax; the Literal operand,
though, yields a value that is defined by you.

The root node in the hierarchy embodies the overall expression. When an expression is
evaluated, the root node is evaluated first. If it is an operator then each of its operands is
evaluated before the operation defined by the operator can be performed. This rule is used to
resolve each and every node in the hierarchy.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 123 of 145

Calculation Builder toolbar

Insert Operand

Inserts the selected operator from the Operand Tray at the position of the currently
selected node on the design surface, at the same time making the selected node an
operand of the newly inserted operator.

The same effect can be achieved by dragging an item from the Operand Tray onto the
node above which the new item is to be inserted, while at the same time holding down the
Ctrl key.

Replace Operand

Replaces the currently selected node on the design surface with the selected item in
the Operand Tray. Any existing operands of the replaced node are used as operands for
the new item. If the new item is not an operator (i.e. it does not support operands) then
the existing operands will be discarded.

The same effect can be achieved by dragging an item from the Operand Tray onto the
node to be replaced.

Advance Selected

Swaps the selected design surface node with its previous sibling.

Defer Selected

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 124 of 145

Swaps the selected design surface node with its next sibling.

Delete

Deletes the currently selected design surface node and all its operands if it has any.
The same effect can be achieved by pressing Delete.

Extract

Deletes the currently selected design surface operator node and replaces it in the
node hierarchy with its first operand.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 125 of 145

Anatomy of a mathematical expression

Operator/ operand type

The type of the operator or operand.

Operand name

The name of the operand in the context of its operator. In this example, the first operand
of a Multiply operator is known as the multiplicand.

Description

A description of the associated node. In the case of operators, the description is based on
the descriptions of its operands. The presence of a question mark indicates that an
operator placeholder has yet to be filled. In such instances the expression is deemed to
be incomplete.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 126 of 145

Selected node

The selected node is the target of Calculation Builder operations.

Operand requiring a value

Some operands – specifically the Parameter and the Literal – require you to enter a
value. The Parameter needs a name (in this example a Parameter has been assigned
the name r, perhaps to represent the radius of a circle) and the Literal requires a numeric
value. To specify a value for such operands, select the node. This will display a value
editor: use this to change the operand value.

Placeholder

A placeholder is an operand that has yet to be selected. It is denoted by the words
"awaiting selection".

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 127 of 145

Batch Client

The Absyntax Batch Client is a program whose purpose is to execute Absyntax projects without
the interactive runtime capabilities of the Absyntax Editor. The program can be found in the
Absyntax installation directory and is named AbsyntaxBatchClient.exe.

Note that the Batch Client offers no means of pausing or resuming a project during execution and
so ignores any project breakpoints that may exist. You can abort a running project, though, by
pressing Return or Enter. Otherwise, the project will continue to execute until it outputs a signal or
data through its exit-point.

The Batch Client is the component to use to execute standalone projects that no longer require
development. It requires fewer of your computer's resources and performs much faster than the
Editor.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 128 of 145

Running the program

Find the Batch Client program, AbsyntaxBatchClient.exe, by navigating to the Absyntax installation
directory using your preferred method. (In Windows, use either a command line window or the
Windows/File Explorer.) Then run it: you will see the following window.

This window displays the Batch Client's command-line usage options for executing an Absyntax
project. As a minimum you must specify the full path of the file containing the project to be
executed. For example:

AbsyntaxBatchClient.exe C:\Projects\Fibonacci.apj

Data

For projects whose Entry input requires data you must qualify the command with the /data
option. For example:

AbsyntaxBatchClient.exe C:\Projects\TwitterSearch.apj /data=Madrid

Note that this will only work if the data ("Madrid", in this case) can be converted by Absyntax
from a string into the type of data required by the project's entry-point. Here's another example,
showing one way of supplying multiple data items.

AbsyntaxBatchClient.exe C:\Projects\Sort.apj /data=46,-1,999

For the final word on data formatting options, see here.

Endpoint

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 129 of 145

By default, the Batch Client delegates the task of project execution to an in-process
service that it creates itself. However, it is possible to redirect the Batch Client to use an
external service instead, typically on another computer, and this is achieved by providing
a value for the /endpoint command line option. (Note that such external services are
usually hosted by the Absyntax Runtime Server.)

The value assigned by this option is the name of an endpoint whose characteristics
are defined in the configuration file, "AbsyntaxBatchClient.exe.config". An endpoint
encapsulates the details necessary for the Batch Client to communicate with the service.
 In order to use this option effectively you should have a working knowledge of Windows
Communication Foundation (WCF).

The section of relevance in the configuration file is shown below.

<configuration>

<system.serviceModel>
<client>

<endpoint name="NetNamedPipeBinding_IBasicProjectService" ... />
<endpoint name="NetTcpBinding_IBasicProjectService" ... />

</client>
</system.serviceModel>

</configuration>

Typically you would create a client endpoint in this section, with an address, binding and
contract to match those exposed by the target service.

Signature

If you need to ensure that a project should be executed only if its signature matches a known
value, you include a value for the /signature command line option, an example of which follows.

AbsyntaxBatchClient.exe C:\Projects\Fibonacci.apj /
signature=2F-40-F2-BA-68-02-8D-30-78-FA-85-82-97-51-8C-84

The value you use for the signature can be obtained via the Absyntax Editor's Project Settings
page.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 130 of 145

Command line data

For the majority of scenarios, specifying project start-up data on the command line is
straightforward.

AbsyntaxBatchClient.exe C:\Projects\TwitterSearch.apj /data=Madrid

It is possible that a project requires multiple items of data to be supplied to its entry-point, in which
case commas should be used to separate individual data items. The following example shows
how to supply data to a project requiring an array of integers at start-up.

AbsyntaxBatchClient.exe C:\Projects\Sort.apj /data=46,-1,999

In this case the string "46,-1,999" is passed to the Batch Client, where it is split into substrings
representing the individual data items and converted to the data type required by the target project.

The rules for defining command-line data items are as follows.

1. Commas must be used to separate substrings.
2. Where a comma is to be included in a substring, enclose it in a pair of double-quotes.
3. Where a double-quote is to be included in a substring, it must not abut against a comma that

acts as a separator. Thus, to ensure that double-quote pairs do not appear in a substring
they must both abut against either the start/end of the string or a comma therein that is not
itself enclosed in double-quotes. The lack of a terminating double-quote will result in the last
substring terminating with the last character in the string.

4. Null values are denoted by abutting pairs of commas.
5. Empty strings are denoted by abutting pairs of double-quotes that both abut against commas

acting as separators or the start/end of the string.
6. White space is not trimmed.

Here are some examples:

Command Line Option Substring

Count
Substrings Description

/Data= 1 [NULL] One null value.
/Data=\"\" 1 [""] One empty string.
/Data=1 1 ["1"]
/Data=, 2 [NULL,NULL] Two null values.
/Data=,, 3 [NULL,NULL,NULL]
/Data=, , 3 [NULL," ",NULL]
/Data=,\"\", 3 [NULL,"",NULL]
/Data=,\"\" 2 [NULL,""]
/Data=\" 1 ["""] One double-quote

character.
/Data=1,\"2,3\" 2 ["1","2,3"]
/Data=\"1,2 1 [""1,2"]

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 131 of 145

/Data=\"1,2\",3 2 ["1,2","3"]
/Data=The,quick,brown,fox 4 ["The","quick","brown","fox"]
/Data=The quick brown fox 1 ["The quick brown fox"]
/Data=The quick,brown fox 2 ["The quick","brown fox"]
/Data=The quick, brown
fox

2 ["The quick"," brown fox"]

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 132 of 145

Executing projects

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 133 of 145

Executing signal-input projects

Signal-input projects have entry-points that do not require data. Such projects can be executed
by the Batch Client in several ways. The techniques described below all work because, during
installation, a default action was associated with .apj files to invoke the Batch Client on the target
file.

Command Line Window

1. Open a command line window.
2. Type the path and file name. For example, "C:\Projects\Fibonacci.apj".

Windows/File Explorer

1. Navigate to the project.
2. Double-click on it.

Batch File

1. Create a text file with a .bat extension.
2. Type into it the path and file name. For example, "C:\Projects\Fibonacci.apj".
3. Save the file.
4. Run the batch file by invoking it from a command line window or double-clicking it in

Windows/File Explorer.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 134 of 145

Executing data-input projects

Data-input projects have entry-points that require data. Such projects can be executed by the
Batch Client in the following ways.

Batch File

1. Create a text file with a .bat extension.
2. Type into it the path and file name of the Batch Client program, followed by all necessary

arguments. For example, "C:\Program Files (x86)\MII Ltd\Absyntax Framework
\AbsyntaxBatchClient.exe C:\Projects\TwitterSearch.apj /data=Madrid".

3. Save the file.
4. Run the batch file by invoking it from a command line window or double-clicking it in

Windows/File Explorer.

Command Line Window

1. Open a command line window.
2. Type the path and file name of the Batch Client program, followed by all necessary

arguments. For example, "C:\Program Files (x86)\MII Ltd\Absyntax Framework
\AbsyntaxBatchClient.exe C:\Projects\TwitterSearch.apj /data=Madrid".

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 135 of 145

Runtime Server

The Absyntax Runtime Server is a program whose purpose is to host multiple executing Absyntax
projects and, more commonly, remote feature groups concurrently. The Runtime Server is used
by the Absyntax Editor to execute projects in an isolated environment. You may also use it to
facilitate parallel processing scenarios.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 136 of 145

Licensing Manager

Use the Absyntax Licensing Manager to add, activate and monitor your licences for the
Absyntax Framework. It can be started by double-clicking the desktop shortcut that
was created during installation or by navigating to the installation directory and invoking
AbsyntaxLicenceManager.exe.

Licence list

The list of all added licences. Absyntax installs with a trial licence that provides you with
full, unrestricted access to all aspects of the Framework.

Description

A description of the type of the licence.

Licensee

The name of the user or company to whom the licence is granted. Trial licences do not
have a licensee.

Licence Key

An alphanumeric string encapsulating details of the licence.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 137 of 145

Status

A visual cue as to the state of the licence. Options are:

Pending

Activated

Expired

Invalid

Expires On

The date on which the licence expires.

Remaining Days

The number of days remaining before the licence expires.

Activate

Click this button in order to activate a licence. You will need an internet connection for this
to work. You can activate a licence at any time and you can have multiple activated
licences. Absyntax compounds the permissions of all active licences in order to determine
the extent to which you can use the Framework and its components. Note that a licence's
expiry date is determined once you have activated it.

New licence details

To enter the details of a new licence, complete the five licence key fields and the licensee
field. If you are entering a key for a third-party execution licence you must additionally
check the Client Id check box and enter the unique client identifier that accompanied
your licence key. Once you have entered all necessary information, the Add button
will become enabled: click this to add the licence to the list. You will be advised of any
incorrect details, so be careful to enter all information accurately. The value you enter for
the licensee field – which must be the same as the value you provided when purchasing
the licence – will be displayed in the Absyntax Editor.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 138 of 145

FAQs

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 139 of 145

General

This section contains frequently asked questions pertaining to the Absyntax Framework in general.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 140 of 145

What is a string?

A string – or, more specifically, a character string – is a programming term used to describe a
sequential collection of zero or more alphanumeric and symbolic characters. Strings are often
used to store and display text.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 141 of 145

What is a Boolean expression?

A Boolean expression is a combination of constant values, variables, operators and functions that,
when evaluated, produces a Boolean value (i.e. either "true" or "false"). An example of a Boolean
expression is as follows:

x > 1

This expression represents a single test on a given number, x. It yields true for all values of x
greater than 1 and false for all values of x less than or equal to 1.

A more complex example, involving two tests, is shown below:

x ≥ 1 AND x ≤ 10

This expression, which makes use of the Boolean "AND" operator, yields true only if the value of x
is in the range 1 to 10 inclusive.

Absyntax uses Boolean expressions in a variety of contexts as the basis for tests. You can create
such expressions in the Absyntax Editor using the Filter Builder.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 142 of 145

Absyntax Editor

This section contains frequently asked questions pertaining to the Absyntax Editor.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 143 of 145

How do I secure a project?

Securing a project involves two steps: setting a password and locking the project. The Editor
allows you to manage passwords for the current project. Any project, be it the current project or a
nested project, can be locked.

Locking a project

1. Open the view that contains the target project. If the target project is the current project then
open the project view (select View → Project View from the menu bar).

2. Select the Pointer Tool.
3. Select the target project from the contained features. If the target project is the current project

then click on the design surface.
4. In the Properties panel, check the Protect property value if it is not already checked.
5. If a password has been set for this project but you have not yet supplied it, you will now be

prompted to enter the password. The lock operation will succeed only if you enter the correct
password. Failure to do this will leave the Protect property value unchecked.

Setting the current project's password

1. Select Project → Set Password... from the menu bar.
2. The Set Password dialogue will open. You will be prompted to enter both a new password

and a confirmation of this new password. If a password has been set for the current project,
you will be prompted to enter this as well.

Clearing the current project's existing password

1. Select Project → Set Password... from the menu bar.
2. The Set Password dialogue will open. You will be prompted to enter both a new password

and a confirmation of this new password and you should leave both fields blank. If a
password has been set for the current project, you will be prompted to enter this as well.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 144 of 145

Can I load a previously saved project into the current project?

Yes. This is referred to as importing a project.

1. Open the view representing the group into which you want to import the project.
2. Select File → Import Project... from the menu bar.
3. The Open dialogue is displayed. Use it find and select the project you want to import.
4. Click Open. The project is imported into the group.

Note that an imported project is just like any other feature. It has no relation to the saved project
file from which it was imported. Any subsequent modifications to the in situ project or its contents
are not reflected in the saved version, which remains unaffected. If you need to save such
changes back to the original file then follow these steps.

Absyntax Framework – User Guide
December 2013

Copyright © 2013 Managing Infrastructure Information Ltd 145 of 145

Can I save an embedded project?

Yes. An embedded project is a project feature that exists within the current root project.

1. Open the view representing the group containing the project feature that you want to save.
2. Select the Pointer Tool.
3. Right-click the project feature, which has the effect of selecting it and displaying the Pointer

Tool's context menu.
4. From the context menu, select Save → Selected Project As...
5. The Save As dialogue is displayed. Use it to complete the operation.

	Absyntax Framework - User Guide
	Table of Contents
	Introduction
	Fundamentals
	Projects
	Feature Groups
	Features
	Connectors
	Signals and Data
	Connections
	Data Types
	Definition
	Data Conversion

	Synchronisation
	Threads
	Re-entrant Paths
	Parallel Computing

	System Requirements
	Installation and Licence Activation
	Editor
	Standard toolbar
	Select Project Type
	Saved project file extensions

	Tools toolbar
	Edit toolbar
	Runtime toolbar
	Filter toolbar
	Test Filter

	Lookup Table toolbar
	Node Hierarchy toolbar
	Feature Tray
	Explorer
	Explorer node context menu

	Feature Group Views
	Filter Builder
	Creating a new filter
	Anatomy of a composite filter

	Filter Tray
	Composite Filter Cache
	Lookup Table Editor
	Anatomy of a lookup table
	Input parameters
	Output parameters
	Testing
	Lookup entries
	Editing a lookup entry
	Refined example

	Properties
	Project Parameters
	Project Parameters toolbar

	Connection Manager
	Connection Manager toolbar

	Output
	Breakpoints
	Breakpoints toolbar

	Breakpoint Editor
	Runtime Data
	Log File Listing
	Find
	Find Results
	Find Results toolbar

	Re-entrant Path Summary
	Re-entrant Path Summary toolbar
	Re-entrant path detail

	Configuration Manager
	Configure

	Connector Tray
	Type Browser
	Known type lists
	Type builder panel

	Options
	Options - General
	Options - View
	Options - Grid

	Project Settings
	Calculation Builder
	Calculation Builder toolbar
	Anatomy of a mathematical expression

	Batch Client
	Running the program
	Command line data

	Executing projects
	Executing signal-input projects
	Executing data-input projects

	Runtime Server
	Licensing Manager
	FAQs
	General
	What is a string?
	What is a Boolean expression?

	Absyntax Editor
	How do I secure a project?
	Can I load a previously saved project into the current project?
	Can I save an embedded project?

